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Abstract—Clustering ensembles is a clustering technique which
derives a better clustering solution from a set of candidate cluster-
ing solutions. Clustering ensemble methods have to address two
distinct but interlinked problems: Generating multiple candidate
solutions from the data and producing a final clustering solution.

Our recently proposed clustering ensembles method
(MMOEA) based on NSGA-II used multiple views to address
the first problem and a novel cluster oriented approach to
address the second problem. MMOEA used a simple crossover
method to explore the search space and three objective functions
to determine the quality of a candidate clustering solution.
The use of a simple crossover method led to slow convergence
and using three objectives in NSGA-II framework is often
discouraged.

This paper presents a new clustering ensemble method, which
introduces new ideas for crossover, mutation, tuning steps and
two objective functions (instead of three) in an evolutionary
process. The results show that our new method outperforms
recent methods for clustering ensembles on different multi-view
datasets.

Index Terms—Clustering Ensemble, Multi-Objective Opti-
mization, Evolutionary Algorithm

I. INTRODUCTION

Clustering is a widely applied technique for analyzing data
by organizing objects into different groups. A key challenge
in clustering is that it is possible to have more than one good
solution. In the last 50 years, thousands of different clustering
methods have been proposed. In recent years, researchers have
focused on getting better results by utilizing the fusion of
different clustering methods. Clustering methods that try to
combine different clustering solutions are commonly referred
as Clustering Ensembles [1].

Clustering ensemble methods use a two step clustering
process: step 1 generates the candidate clustering solutions,
and step 2 constructs a single candidate clustering solution
from the generated candidate clustering solutions.

There are different variations for clustering ensembles,
but median partition based clustering ensembles are the best
approach so far for step 2 of clustering ensembles [2]. The
median partition approach forms a final solution by selecting
a single candidate clustering solution from a set of candidate
clustering solutions. A common way of selecting the final clus-
tering solution is to pick the candidate clustering solution that

has a maximum average similarity to all generated candidate
clustering solutions.

Since different clustering solutions generally consist of high
and low quality1 clusters, a selected final clustering solution is
also limited to have a mixture of high and low quality clusters.
We propose a better clustering solution by applying the cluster
oriented approach which combines high quality clusters from
different clustering solutions.

Step 2 of clustering ensembles is heavily dependent upon
step 1. If the generated candidate clustering solutions are not
diverse and do not include a wide range of clusters then the
final clustering solution might not be able to produce better
results. One approach is to use multiple views for generating
diverse clusters in step 1.

Recently, evolutionary approaches have become popular for
multi-objective clustering ensembles because of their ability
to provide good results [3]. Our recent work MMOEA [4]
uses multiple views to generate an initial set of candidate
clustering solutions and then applies an evolutionary approach
(NSGA-II) using a simple crossover method and three objec-
tive functions to select better quality clusters. However, the
simple crossover method might not result in diverse clustering
solutions and hence needs to be replaced by better crossover
functions. Moreover, mutation and tuning steps can help in
exploring interesting search space and faster convergence.

Köppen et.al, argued that NSGA-II is not suitable for solv-
ing many (more than two) objective optimization problems [5].
Therefore the use of three objective functions is questionable
and it would be better to either use NSGA-III or reduce the
number of objectives.

This paper introduces a new approach for clustering en-
sembles i.e. Multi-Objective Multi-View Ensemble Clustering
(MOMVEC) based on MMOEA and has the following inno-
vations.

1) Developing crossover methods for generating new clus-
ters for candidate clustering solutions.

2) Developing mutation methods for splitting and merging
clusters.

3) Developing multi-objective fitness function for multi-
objective optimization problem.

1Generally, the high quality clusters have low intra-cluster distances and
high inter-cluster distance from other clusters978-1-4799-7492-4/15/$31.00 c⃝ 2015 IEEE
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Fig. 1: Overview of MOMVEC clustering method

Section II discusses related work; section III explains the
proposed method; section IV describes the experimental setup;
section V provides the experiment results with discussions and
lastly section VI concludes the paper.

II. RELATED WORK

The majority of the clustering ensemble methods formulate
the clustering as a single objective optimization problem,
but some use multiple objectives. Handl and Knowles pro-
posed a multi-objective evolutionary approach for clustering
ensembles known as multi-objective clustering algorithm with
k-determination (MOCK) based on PEAS-II [3], [6]. Their
fitness function was based on two objectives: connectedness
and compactness of the cluster. These two objectives were
derived from link based clustering methods and the k-means
algorithm.

Bandyopadhyay et al. [7] proposed a multi-objective evo-
lutionary algorithm based on fuzzy clustering. Their proposed
fitness function used two objective functions: Jm criterion [8]
and Xie-Beni index [9].

Korkmaz et al. [10] proposed two objectives and used an
encoding scheme based on linkage to reduce the redundancy
of the set of candidate clustering solutions. The first objective
was to minimize the number of clusters and the other was to
minimize the intra-cluster variance. This approach used Pareto
dominance to find a diverse set of nondominated clustering
solutions.

Other prominent approaches for multi-objective cluster-
ing ensembles algorithms include [11], [12], [13]. Gener-
ally, multi-objective clustering ensembles uses two objectives
and their objective criteria mainly focus on minimizing the
intra-cluster distance. A detail analysis of multi-objective
approaches can be found in [14], [15].

Clustering ensemble methods are currently limited to use
only a single view of the data. Some clustering methods
use multiple views in the clustering process, but are not
categorized as clustering ensembles e.g. [16], [17] etc. Our
proposed work is more related to MMOEA [4], a clustering
ensemble method that uses multiple views.
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Fig. 2: Process of generating 8 different candidate clustering
solutions.

III. THE METHOD

Our Multi-objective Multi-view Ensemble Clustering
(MOMVEC) is based on NSGA-II [18], which generates
multiple candidate clustering solutions from multiple views of
the data and then forms a better clustering solution by using
a multi-objective evolutionary approach for selecting a set of
high quality clusters from the candidate clustering solutions.

Figure 1 presents an overview of MOMVEC. The first step
of the MOMVEC method is to identify multiple views of the
dataset. Then these views are used to generate multiple feature
matrices to which clustering algorithms are applied to generate
multiple candidate clustering solutions. These initial candidate
solutions are then encoded (genetic representation) as an initial
population and their fitness is evaluated on the basis of two
criteria.

The evolutionary process is then applied. The current popu-
lation consists of Q (the set of new individuals just created) and
P (the elite individuals obtained from the previous iteration).

After fitness evaluation on Q, we use the NSGA-II to
compute Pareto fronts (F1, F2 etc) and rank all the candidate
clustering solutions (i.e. P and Q). If the stopping criteria is
not met then we retain the top half of the ranked candidate so-
lutions in P and Q and then perform Selection then Crossover,
Mutation followed by Tuning steps to generate a set of new
candidate clustering solutions (Q).

The following sections describe the method in more details.

A. Generating Initial Candidate Clustering Solutions

Clustering ensembles commonly generate an initial set of
candidate clustering solutions by applying different types of
clustering algorithms on one feature matrix. Instead, we use
multiple matrices from multiple views of the data.

Figure 2 shows the process of generating initial candidate
clustering solutions from the WebKB2 dataset. The content
and hypertext of the inlinks of the web pages are the two views
of the web pages1. The feature matrices are generated by using
the standard Term Frequency Inverse Document Frequency
(TFIDF) and Term Frequency (TF) weighting schemes on
the content (all terms) and hypertext of the web pages. Four
popular clustering algorithms - single link, complete link,
average link and k-means - are then applied to the two feature
matrices to generate eight candidate clustering solutions.

1These two views were predefined and provided with the dataset.



B. Genetic Representation of Candidate Clustering Solutions

Since the evolutionary approach requires a genetic repre-
sentation for candidate clustering solutions, we used a matrix
based binary encoding scheme [15] in which a clustering
solution or individual is represented as a k × N matrix.
The k rows represent clusters and the N columns represent
documents.

Figure 3 depicts a sample clustering solution and its matrix
based encoding is described in Figure 4. The value 1 in a
cell of the matrix means that the document is assigned to the
cluster. The key advantage of this representation is that it can
represent overlapping clusters. Note that this representation
would allow a clustering in which some documents are not
allocated to any cluster.
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Fig. 3: Sample Clustering.

1 2 3 4 5 6 7 8 9
A 1 1 0 1 0 0 0 1 0
B 0 0 1 0 0 1 1 0 0
C 0 0 0 0 1 0 0 0 1

Fig. 4: Matrix-based binary encoding scheme of an individual
where columns represent the document ids and rows represent
clusters.

C. Fitness Evaluation

Fitness evaluation of candidate clustering solutions is based
on the following two objectives criteria.

1) Intra-cluster distance: Minimize the distances between
the objects within each cluster of a clustering solution.

2) Inter-cluster similarity: Minimize the similarity between
each pair of clusters in a clustering solution.

Both objectives favor the small clusters, therefore we added
a weighting parameter based on cluster size to the first
objective which favors the big clusters. The two objectives
trade off against each other. One gives more importance to
clustering solutions that have big clusters of closely related
objects and the other gives preference to small clusters that
are different from each other. The first objective function is
defined as follows:

Φa(C) =
1

|C|
∑
c∈C

1√
|c|

 1

|c|(|c| − 1)

∑
d,d′∈c

δ(d, d′)


where c is a cluster in clustering solution C, d and d′ are docu-
ments in cluster c, δ is a distance function which computes the
distance between two documents. Φa(C) is the average over

all clusters of the cluster spread, weighted by a function of
cluster size. The cluster spread is the average distance between
pairs of documents in the cluster. We used cosine function
for computing the similarity/distances between the documents.
The cosine function provides a value from 0-1, where a higher
value indicates that documents are similar. Cosine similarity
function can also be used as distance function if the value
of cosine similarity function is subtracted from 1. δ(d, d′)
represents the 1-cosine whereas γ(d, d′) represents cosine of
d, d′. The second objective function is defined as follows:

Φe(C) =
1

|C|(|C| − 1)

∑
c,c′∈C∧c̸=c′

 1

|c||c′|
∑

d∈c,d′∈c′

γ(d, d′)


where c is a cluster in clustering solution C, d and d′ are
the document in cluster c, γ is a similarity function which
computes the similarity between two documents. Φe(C) is the
average over all pairs of clusters of the similarity of the pair of
clusters. The similarity of two clusters is the average similarity
of the pairs of documents from the two clusters.

Both objective functions are coded in such a way that their
values are required to be minimized. Therefore our algorithm
must solve the multi-objective optimization problem which
attempts to find a solution that minimize both Φa(C) and
Φe(C).

The evolutionary approach not only requires a good fitness
evaluation criteria but also needs a mechanism to generate new
and diverse candidate clustering solutions in order to avoid
local optima.

D. Selection

The selection step selects a number of candidate solutions
from the previous iteration to generate a set of new candidate
clustering solutions, based on the NSGA-II selection method
which uses ranks and crowding distance of the candidate
clustering solutions [18].

E. Crossover

In evolutionary approaches the term crossover indicates a
process for generating a new individual from two previous
individuals. This research work used two crossover methods:
the row-wise and the column-wise crossover method.

The row-wise method swaps a randomly chosen row from
one parent with a randomly chosen row from the other parent,
creating two new children. If either child has any columns
that are all zeros (i.e. unassigned documents), it adds an extra
row to that child containing these documents. This crossover
method may result in overlapping clusters but the coverage
will always be 100%.

Figure 5 shows an example of the row-wise crossover
method in which the rows with dark gray background are
swaped between Parent 1 and Parent 2 and as a result Child
1 and Child 2 are created. The extra row highlighted in light
gray in Child 1 contains the unassigned documents after the
swapping.



1 2 3 4 5 6 7 8 9

A 1 1 0 1 0 0 0 1 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

1 2 3 4 5 6 7 8 9

A 0 0 1 0 0 1 1 0 0

B 1 1 0 0 0 0 0 0 0

C 0 0 0 1 1 0 0 0 0

D 0 0 0 0 0 0 0 1 1

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 0 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

D 0 0 0 1 0 0 0 1 0

1 2 3 4 5 6 7 8 9

A 0 0 1 0 0 1 1 0 0

B 1 1 0 1 0 0 0 1 0

C 0 0 0 1 1 0 0 0 0

D 0 0 0 0 0 0 0 1 1

Parent 1

Parent 2

Child 2Child 1

Fig. 5: Example of row-wise crossover method.

1 2 3 4 5 6 7 8 9

A 1 1 0 1 0 0 0 0 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 1 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 1 1 0 0 0 0

D 0 0 0 0 0 0 0 0 1

1 2 3 4 5 6 7 8 9

A 1 1 0 1 0 0 0 1 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 0 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 1 1 0 0 0 0

D 0 0 0 0 0 0 0 1 1Parent 1

Parent 2

Child 2Child 1

Fig. 6: Example of column-wise crossover method.

The column-wise method swaps randomly (from 2 to 10)
chosen columns of one parent with the corresponding columns
of the other parent. If the parents have different number of
clusters, then excess rows are given the zero value for chosen
columns. Additional step in the column-wise crossover is to
remove the empty cluster. This type of crossover does not
affect the overlapping of documents but may result in less
than 100% coverage.

Figure 6 shows an example of column-wise crossover
method in which the columns with dark gray background are
swaped between Parent 1 and Parent 2 and as a result Child 1
and Child 2 are created. The the column 8 in Child 1 contains
zero value for all rows indicating that the document was not
assigned to any cluster.

F. Mutation

In this research work, two different types of mutation
methods are used. Split-mutation splits big clusters into two
clusters and merge-mutation merges two small clusters into
one cluster. We used a random approach for split-mutation
which forms two clusters randomly from one cluster. The
merge-mutation is based on inter-cluster distances and merges
two small clusters in a candidate clustering solution that have
minimum inter cluster distance.

1 2 3 4 5 6 7 8 9

A 1 1 0 1 0 0 0 1 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 0 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 0 1 0 0 0 1

D 0 0 0 1 0 0 0 1 0

Split Cluster A

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 0 0

B 0 0 1 0 0 1 1 0 0

C 0 0 0 1 1 0 0 0 0

D 0 0 0 0 0 0 0 1 1

1 2 3 4 5 6 7 8 9

A 1 1 0 0 0 0 0 1 1

B 0 0 1 0 0 1 1 0 0

C 0 0 0 1 1 0 0 0 0

Merge Cluster A and D

Fig. 7: Example of split and merge mutation method.

Figure 7 shows two examples of mutation. On the left, split-
mutation is applied to C1 to generate C3. Cluster (row) A is
randomly selected and split into two clusters A and D. On the
right, merge-mutation is applied to C2. Cluster A and D in C2

are merged into cluster A in C4.

G. Tuning

The newly generated candidate clustering solutions are
mostly based on a random approach and may not represent
sensible clusterings. This would cause the evolutionary ap-
proach to converge slowly. Therefore we need a local search
mechanism to find local optima more quickly. This tuning is
based on k-means and includes the following two steps for all
newly generated candidate clustering solutions.

1) Calculating cluster centroids.
2) Relocating each document to the cluster with the nearest

centroid.
These two steps are repeated until there is no change to

centroids and no more relocation of the documents.

H. Algorithm: MOMVEC

The algorithm MOMVEC developed in this research work
uses a multiple objectives approach for selecting the final
clustering solution. The algorithm ranks individuals iteratively
based on Pareto ranking and crowding distance like NSGA-II.
It has the following properties:

• it finds Pareto non-dominated candidate solutions in a
multi-objective optimization and uses Pareto ranking to
sort all candidate solutions.

• it uses the concept of elitism, which means keeping the
best candidate solutions.

• it preserves the diversity in a set of candidate clustering
solutions, using crossover and mutation methods.

Let E be a multi-objective optimization problem of the form:
p∗ = argminp {f1(p), ...fn(p)}. Then Pareto dominance,
Pareto non-dominance and Pareto ranking are defined as
follows [19]:



Algorithm 1 MOMVEC
Input: initial candidate clustering solutions Pinit and
maximum number of iterations max.
Output: Final clustering solution C.

1: P ← initializePopulation(Pinit)
2: for i← 1,max do
3: Compute Pareto ranking for P and sort P
4: P∗ ← top half from P
5: Q← Null
6: for i← 1, size(P)/2 do
7: p1, p2 ← select two candidate clustering solutions

from P
8: rand← generate a random number from 1 to 6.
9: if rand = 1 then

10: c1, c2 ← rowCrossover(p1, p2)
11: else if rand = 2 then
12: c1, c2 ← columnCrossover(p1, p2)
13: else if rand = 3 or rand = 4 then
14: c1, c2 ← Apply merge-mutation if possible,

otherwise apply split-mutation on p1 and p2
15: else if rand = 5 or rand = 6 then
16: c1, c2 ← Apply split-mutation if possible, oth-

erwise apply merge-mutation on p1 and p2
17: end if
18: Q← Apply tuning on c1 and c2
19: end for
20: P ← P∗ ∪Q
21: end for
22: σ ← Compute Pareto ranking for P
23: P∗ ← {p′ ∈ P : ∀p′ ∈ P, σ(p′) = 1}
24: Select C from P∗

Definition 1. (Pareto dominance) Let p and p′ be two
candidate solutions of E . p is said to have a Pareto dominance
over p′ (p ≺ p′) if and only if p has a lower value than p′ on
at least one objective function and has a lower or equal value
on the remaining objective functions.

Definition 2. (Pareto non-dominated set) Let P be a set of
candidate solutions of E . P∗

E ⊆ P is a Pareto non-dominated
solution set of E w.r.t. P if and only if ∀p∈P,p∗∈P∗

E
p ⊀ p∗

Definition 3. (Pareto ranking) Let P be a population of
individuals for E . The Pareto ranking function σ : P → N+

for E is defined as follows.
P1 is the non-dominated subset of P . For i > 1, Pi is the

non-dominated subset of P\
∪

0<j<i Pj . The Pareto rank of
a candidate clustering solution p is the index of the subset it
belongs to: ∀p ∈ Pi, σ(p) = i.

The Pareto ranking function as described in Definition 3
provides a score for each candidate clustering solution in a
set of candidate clustering solution P .

Algorithm 1 describes the salient operation of our algorithm
MOMVEC. It takes two arguments as inputs, the initial

candidate clustering solutions and the maximum number of
iterations. The initial candidate clustering solutions are the set
of candidate solutions P generated from multiple views (as
described in section III-A). The Pareto ranking function σ is
calculated for current set of candidate clustering solutions P
according to Definition 3 using the objective functions Φa(C)
and Φe(C).

The ranking function σ sorts the candidate clustering solu-
tions P . The loop on line 6 generates a new set of candidate
clustering solutions by applying different methods on P . The
row-wise and column-wise crossover methods are chosen with
a probability of 1

6 whereas the merge-mutation and split-
mutation methods are chosen with a probability of 1

3 . The
new candidate clustering solutions go under the tuning step
and then merged with previous top rank (non-dominated) set
of candidate clustering solutions P∗.

Once the main loop is completed, the set of Pareto optimal
solution P∗ is computed from P . The final clustering solution
C is finally selected based on longest crowding distance from
rank 1 Pareto front as described by [18].

IV. EXPERIMENTAL SETUP

MOMVEC uses the following parameter settings: maximum
number of generations = 1000, crossover probability 1

6 , mu-
tation probability 1

3 , population size = 20. We used a random
number of clusters for k-means algorithm and fixed number of
clusters (provided by user) for all other algorithms to generate
initial candidate clustering solutions. MOMVEC was com-
pared with three commonly used single objective clustering
ensembles and two multi-objective clustering approaches. The
final clustering solutions of all methods were compared using
three different metrics: Clustering Accuracy (CA) [20], F1-
measure (F1) [21] and Rand Index (RI) values [22], which
measures the quality of clustering solution against the provided
gold standard clustering solutions for a given dataset1.

This research work was tested on four two-view datasets
WebKB22, WebKB42, Citeseer3 and Cora4, and one three-
view dataset consisting of AMBIENT5, MORESQUE6 and
ODP-2397 datasets. These datasets are widely used for testing
clustering algorithms and provide multiple views.

Our method MOMVEC was compared with five methods:
CTS-Ensemble, SRS-Ensemble, ASRS-Ensemble, MOCK and
MMOEA. The first three methods are three basic single
objective clustering ensemble methods based on link-based
pairwise similarity matrices [23].

MOCK is a multi-objective evolutionary algorithm recently
proposed by [3]. The code was provided by its author, we

1Clustering is an unsupervised learning in which the true clustering solution
or gold standards (generated by humans) for a given dataset is not available
during the clustering process. Therefore, we can not use the evaluation metrics
as an objective functions during the clustering process.

2http://www.cs.cmu.edu/∼webkb/
3http://www.cs.umd.edu/∼sen/lbc-proj/data/citeseer.tgz
4http://www.cs.umd.edu/∼sen/lbc-proj/data/cora.tgz
5downloaded from http://credo.fub.it/ambient/
6downloaded from http://lcl.uniroma1.it/moresque/
7downloaded from http://credo.fub.it/odp239/



Dataset
CTS-Ens SRS-Ens ASRS-Ens MOCK MMOEA MOMVEC

v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 cmb v1 v1+v2 cmb

WebKB2-Cornell 83.54 83.95 83.54 83.59 83.95 83.95 84.34 84.43 91.12 91.12 91.12 91.12 91.12 92.51
WebKB2-Texas 86.61 87.04 86.22 87.04 86.22 87.94 87.01 87.39 90.12 90.21 90.42 90.15 90.21 91.45
WebKB2-Washington 79.31 78.09 71.09 71.09 71.09 71.09 80.12 81.23 84.91 86.43 86.72 87.11 88.19 92.13
WebKB2-Wisconsin 73.83 75.16 73.83 74.16 73.83 74.16 74.98 75.33 85.54 86.96 88.54 88.18 90.18 92.88
WebKB4-Cornell 56.41 57.95 56.92 57.69 56.41 57.69 58.01 59.98 68.12 68.82 70.12 70.13 71.11 75.23
WebKB4-Texas 71.12 59.89 71.12 59.36 72.36 60.17 72.36 60.17 73.01 74.87 75.45 74.12 76.87 78.13
WebKB4-Washington 68.26 68.83 69.57 69.65 69.13 69.65 69.82 70.23 72.17 72.51 74.17 72.34 72.54 77.93
WebKB4-Wisconsin 75.47 77.74 75.74 78.49 78.11 78.49 79.91 80.45 79.91 80.98 79.91 79.91 81.54 83.91
Citeseer 36.02 42.63 48.04 48.32 43.87 44.32 45.98 45.98 50.01 51.45 54.34 51.12 53.32 60.12
Cora 46.12 47.15 41.91 42.35 44.72 46.35 46.51 47.22 50.95 51.12 55.11 51.31 52.32 60.15

TABLE I: Clustering Accuracy computed on 10 different multi-view datasets.

Dataset
CTS-Ens SRS-Ens ASRS-Ens MOCK MMOEA MOMVEC

v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 cmb v1 v1+v2 cmb

WebKB2-Cornell 91.28 91.28 91.28 91.28 91.28 91.28 91.54 91.68 91.95 91.68 92.01 91.95 91.68 92.01
WebKB2-Texas 90.14 92.14 92.61 92.61 92.61 92.61 92.56 92.69 92.61 92.69 93.28 92.61 92.69 93.28
WebKB2-Washington 88.45 88.71 88.71 88.71 88.71 88.71 89.91 89.91 90.71 91.74 92.14 91.11 92.14 93.83
WebKB2-Wisconsin 85.62 86.76 85.62 86.45 84.38 86.45 86.12 86.93 86.32 87.23 89.91 87.12 89.12 92.79
WebKB4-Cornell 66.17 67.21 66.52 67.56 66.52 67.56 67.56 68.32 69.12 70.34 71.12 70.22 71.63 75.81
WebKB4-Texas 65.09 47.97 65.09 47.97 65.09 47.97 66.01 48.13 67.19 67.73 70.01 68.31 70.73 74.07
WebKB4-Washington 50.44 63.67 55.43 63.48 56.24 63.67 58.23 64.39 62.99 67.16 71.25 63.87 69.65 74.41
WebKB4-Wisconsin 66.85 67.73 66.85 68.01 67.87 68.01 70.03 70.97 74.32 75.46 76.23 75.15 76.75 78.14
Citeseer 50.59 56.41 50.94 52.76 52.87 56.78 54.01 58.94 58.87 59.73 61.23 61.18 61.73 68.29
Cora 56.05 58.61 52.83 56.33 55.54 56.53 57.98 58.17 59.62 61.15 62.21 60.54 62.17 63.54

TABLE II: F1-measure computed on 10 different multi-view datasets

Dataset
CTS-Ens SRS-Ens ASRS-Ens MOCK MMOEA MOMVEC

v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 v1 v1+v2 cmb v1 v1+v2 cmb

WebKB2-Cornell 72.38 72.94 71.29 72.94 71.94 72.94 71.01 72.94 72.66 72.94 75.21 73.13 73.64 75.43
WebKB2-Texas 76.72 76.91 76.14 76.33 76.14 76.14 76.99 76.34 77.89 78.31 79.89 78.23 78.51 80.21
WebKB2-Washington 67.04 68.41 56.86 58.41 57.01 58.41 68.19 69.12 70.41 75.12 79.32 71.12 78.12 87.12
WebKB2-Wisconsin 60.91 61.55 59.38 61.55 59.38 61.55 69.11 70.33 74.93 74.93 75.58 75.45 78.93 88.32
WebKB4-Cornell 61.02 61.54 61.92 61.96 61.02 61.96 63.12 63.76 70.79 75.12 76.17 73.12 76.07 82.72
WebKB4-Texas 64.19 48.13 66.73 48.13 66.73 48.13 67.53 50.11 72.65 73.12 74.65 74.95 76.41 80.91
WebKB4-Washington 66.73 67.12 66.17 67.96 65.52 67.96 72.12 73.01 73.13 74.76 76.21 74.43 75.11 80.56
WebKB4-Wisconsin 74.82 75.75 75.15 76.83 75.58 76.83 75.88 77.63 80.76 81.12 82.12 82.94 83.45 85.14
Citeseer 60.98 65.35 64.32 68.76 60.43 73.06 72.23 74.34 76.26 77.13 77.23 78.26 79.36 85.21
Cora 63.82 69.34 70.44 72.47 70.21 73.92 76.12 74.23 78.79 80.21 81.83 80.11 81.32 89.75

TABLE III: Rand Index computed on 10 different multi-view datasets

used standard parameters for generating the results on different
views of the different datasets1.

MMOEA is a multi-objective multi-view evolutionary algo-
rithm recently proposed in [4]. We used standard parameters
for the algorithm. This algorithm provides the facility to get
the final results by combining the multiple views. MMOEA
and MOMVEC both use the NSGA-II approach to compute
the Pareto fronts and differs in terms of implementation of
the algorithm, fitness function, crossover methods, mutation
methods and tuning functions.

V. RESULTS AND DISCUSSION

Tables I, II and III present the average values of 100
runs of the clustering methods in terms of CA, F1 and RI

1http://personalpages.manchester.ac.uk/mbs/julia.handl/mock.html

values respectively2. These values are computed on all datasets
specified the in first column for their corresponding clustering
methods. The v1 and v1+v2 columns for all clustering methods
indicate that the value is computed for view one (terms) and
a concatenation of two views (view one and view two) into
a single feature matrix. The cmb column mentioned under
MMOEA and MOMVEC indicates that the view one and
view two both were used in the clustering methods separately
having two different feature matrices.

The best values obtained in terms of CA, F1 and RI are
shown in bold font for v1, v1+v2 and cmb. Overall, MOMVEC
always performed at least equally well to the other clustering
methods in terms of CA, F1 and RI and generally out-
performed other clustering methods.

2values are converted to percentages by multiplying them with 100 for
better understanding



Dataset
CA Improvement F1 Improvement RI Improvement

v1 v1+v2 cmb v1 v1+v2 cmb v1 v1+v2 cmb

WebKB2-Cornell 0.000 0.000 1.525 0.000 0.000 0.000 0.647 0.960 0.293
WebKB2-Texas 0.033 0.000 1.139 0.000 0.000 0.000 0.437 0.255 0.401
WebKB2-Washington 2.591 2.036 6.238 0.441 0.436 1.834 1.008 3.994 9.834
WebKB2-Wisconsin 3.086 3.703 4.902 0.927 2.167 3.203 0.694 5.338 16.856
WebKB4-Cornell 2.951 3.328 7.288 1.591 1.834 6.594 3.291 1.265 8.599
WebKB4-Texas 1.520 2.671 3.552 1.667 4.429 5.799 3.166 4.499 8.386
WebKB4-Washington 0.236 0.041 5.069 1.397 3.708 4.435 1.778 0.468 5.708
WebKB4-Wisconsin 0.000 0.692 5.006 1.117 1.710 2.506 2.699 2.872 3.678
Citeseer 2.220 3.635 10.637 3.924 3.348 11.530 2.623 2.891 10.333
Cora 0.707 2.347 9.145 1.543 1.668 2.138 1.675 1.384 9.679

TABLE IV: Percentage improvement of MOMVEC compare to MMOEA

In table I, MOCK, MMOEA and MOMVEC have the max-
imum value 79.91 for view one on the WebKB4-Wisconsin
dataset, however, MOMVEC outperformed all other clustering
methods in v1+v2 and cmb views.

In table II, MMOEA and MOMVEC have the highest
F1 values on WebKB2-Cornell dataset for all views. The
SRS-Ens, ASRS-Ens, MMOEA and MOMVEC clustering
methods have the highest value for view one, but MOMVEC
outperformed other clustering methods when the views were
combined on WebKB2-Texas dataset.

Table III shows that MOMVEC outperformed all other
clustering methods in terms of RI on all views.

Table IV shows the percentage improvements of MOMVEC
over MMOEA in terms of CA, F1 and RI values on datasets
having two views. The highlighted values represent the max-
imum improvement achieved by the MOMVEC algorithm. In
terms of CA, F1 and RI values the maximum improvement
achieved by the MOMVEC is 10.637% on Citeseer dataset,
11.530% on Citeseer dataset and 16.856% on WebKB2-
Wisconsin dataset respectively. Overall MOMVEC shows a
reasonable improvement over MMOEA in most of the cases.

We also computed CA, F1 and RI values on the combined
dataset of 397 queries for all views1 which also showed that
MOMVEC outperformed other clustering methods. Figure 8
shows F1 values computed on combined dataset. The values
for CA and RI also shows the same trend.

The results performed on view one and view two produced
different clustering solutions. The CA, F1 and RI values
which represent the quality of clustering were different for
both views. Generally view one (terms) dominated view two
(hypertext), therefore we only showed the results of view one.
However, In some cases view two dominated the results. This
variation of results on two views suggested that we should
consider multiple views for clustering the data.

Simply concatenating the two views into a single feature
matrix is not always a good solution. As shown in the
results, the CA, F1 and RI values computed on WebKB4-
Texas dataset for view v1+v2 was worse than v1 in case of

1we concatenated three views and formed on feature matrix for CTS-
Ensemble, SRS-Ensemble, ASRS-Ensemble and MOCK and generated three
feature matrices from views separately for MMOEA and MOMVEC for fair
comparison
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Fig. 8: box plot of F1-measure values on combined dataset

CTS-Ensemble, SRS-Ensemble, ASRS-Ensemble and MOCK
clustering methods. MOMVEC and MMOEA used multiple
views separately therefore they got better results.

In order to get enough evidence to conclude that our pro-
posed method MOMVEC provides a significant improvement,
we performed the pairwise Wilcoxon statistical significance
test [24] on CA, F1 and RI values computed on all datasets.
The values for MOMVEC were treated as a control group
and was compared individually with the values of the other
clustering methods.

The p-values for two views and combined datasets calcu-
lated on Clustering Accuracy, F1-measure and RI values are
less then 0.005. The statistical test was performed for α = 0.05
and the results showed that the improvement of MOMVEC on
all other clustering methods is statistically significant.

Figure 9 shows the performance of MOMVEC when we
independently took out crossover, mutation and tuning steps.
The y-axis represents the average Clustering Quality (Average
CA) computed on all datasets and the x-axis represents the
number of generations. The algorithm converged after 240
generations with all steps, 600 generations without the tuning
step, 455 generations without the mutation step and 360 gen-
erations without the crossover step. This analysis provided the
insight about the importance and impact of the each step. The
tuning step (i.e. local search) had the greatest impact on the
speed of convergence of the algorithm. The mutation methods
were more important for speed of convergence (though not for
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Fig. 9: Comparison of average clustering quality (CA) of MOMVEC,
MOMVEC without tuning, MOMVEC without mutation, MOMVEC
without crossover steps for 700 generations.

early accuracy) than the crossover methods.

VI. CONCLUSION

The main contribution of this work was a new clustering
ensemble method (MOMVEC) based on MMOEA. MOMVEC
introduced four new innovations: weighted intra-cluster dis-
tance in objective functions, row/column wise crossover meth-
ods, split/merge mutation methods and a tuning method in the
multi-objective evolutionary process for refining the clustering
solution.

MOMVEC outperformed other clustering ensemble meth-
ods. Even when restricted to a single view MOMVEC pro-
vided better results on the majority of the datasets and was
never worse. The use of multiple views generated a diverse set
of clusters and led to even better results. The results also lead
to the conclusion that using a multi-objective approach is much
better than using a single objective approach for clustering
ensembles.

MOMVEC is able to produce both overlapping and non-
overlapping clusters. The presented clustering approach auto-
matically determines the number of clusters for final clustering
solution. The limitation of this approach is that it requires
multiple views to be predefined.

The current approach works well on small to medium size
datasets having not more than 1500 features. Experiments
indicate it is slow on large datasets with more then 4000
features. One of the remedies for this issue is to use dimension-
ality reduction techniques to reduce the number of features.
However, using dimensionality reduction techniques may lead
to loss of information.

Future directions for this work are to improve the scalability
of MOMVEC on larger corpora by applying an effective di-
mensionality reduction technique and to automatically identify
the multiple views of the data without using any predefined
views or domain knowledge.
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