
Exploiting User Queries for Search Result
Clustering

Abdul Wahid, Xiaoying Gao, and Peter Andreae

School of Engineering and Computer Science,
Victoria University of Wellington,

19 Kelburn Parade 6012. Wellington, New Zealand
{abdul.wahid,xgao,pondy}@ecs.vuw.ac.nz

http://ecs.victoria.ac.nz

Abstract. Search Result Clustering (SRC) groups the results of a user
query in such a way that each cluster represents a set of related results.
To be useful to the user, the different cluster should contain the results
corresponding to different possible meanings of the user query and the
cluster labels should reflect these meanings. However, existing SRC al-
gorithms often ignore the user query and group the results based just
on the similarity of search results. This can lead to two problems: low
quality cluster, where the results within a single cluster are related to
different meanings of the query; and poor cluster labels, where the label
of the cluster does not reflect the query meaning associated with the
results in the cluster.
This paper presents a new SRC algorithm called QSC that exploits the
user query and uses both syntactic and semantic features of the search
results to construct clusters and labels. Experiments show that the query
senses are good candidates for the cluster labels and the algorithm can
lead to high quality cluster and more semantically meaningful labels than
other state-of-the-art algorithms.

Keywords: Web Clustering Engine, Search Result Clustering, Query Senses,
Document Clustering

1 Introduction

The most important job of search engines is to display the results of a user query
in such a way that user can easily find the desired information. A user query
that has multiple senses is often called an ambiguous query. The user query
jaguar is an ambiguous query e.g. it can mean American big cat, the British car
manufacturer, an operating system by Apple, etc. Traditional search engines will
return the list of ranked pages without considering the different senses of the
query, leaving the user to browse through irrelevant pages. In contrast, clustering
search engines such as Carrot use Search Result Clustering algorithms that group
documents and provide descriptions for these groups enabling users to find their
desired results in a more efficient way.

2 Abdul Wahid, Xiaoying Gao, and Peter Andreae

The goal of Search Result Clustering is not only to cluster search results
but also to provide semantically meaningful cluster labels. A Cluster label is a
one-phrase description of all the documents in a cluster enabling users to decide
whether to browse the list of documents in a cluster by looking at the cluster
label. It is a common practice to use the most common keywords shared by
all the documents in a cluster as a cluster label. Documents can have common
keywords that might represent either more than one sense or might not represent
any sense of the user query. Therefore, cluster labels based on common keywords
are not always useful to the user. Also the clusters will be more useful to the
user if all the documents in a cluster represent only one particular sense of the
user query.

Traditional Search Result Clustering algorithms which ignore the user query
are more vulnerable to the problems of low quality cluster and poor cluster
labels. Low quality cluster is having documents in a cluster that represent more
than one senses of the user query and poor cluster labels are cluster labels that
do not represent any senses of the user query.

The similarity between two documents is often measured using word fre-
quency. Such similarity measures are regarded as syntactic measures because
they only consider counts of words. In order to minimize the problem of low
quality cluster, this paper uses both syntactic and semantic features (topics) of
the documents.

This paper presents a new algorithm Query Sense Clustering (QSC) that
exploits the user query and combines semantic and syntactic features of a doc-
ument for the clustering solution. The paper is organized as follows: section 2
highlights the related work; section 3 discusses the representation and similarity
measures of the documents and the query senses; section 4 describes the algo-
rithm; section 5 focuses on the evaluation and analysis of the results and section
6 concludes the paper.

2 Related Work

Search Result Clustering (SRC) methods can be classified into three categories:
data-centric, description-aware and description-centric [5].

The data-centric category contains traditional clustering algorithms (hier-
archical, partitioning) and the focus is on the clustering process. The Scat-
ter/Gather algorithm [15, 29] is the pioneer example of the data-centric cate-
gory. Other prominent examples are WebCat [14], AISearch [32], LASSI [19],
TRSC [25] and Link-based clustering [38]. The main drawback of this category
is the poor cluster labels which are often generated from the text and are often
meaningless.

The description-aware methods carefully select one or more features to con-
struct meaningful cluster labels. Suffix Tree Clustering (STC) [36, 35] was the
first algorithm that used suffix trees to build cluster labels and perform cluster-
ing on search results. Later it was improved by fixing the scalability issue [4, 20],
implementing better scoring function (ESTC) [8] and approximating sentences

Exploiting User Queries for Search Result Clustering 3

for better document similarity (SnakeT) [13]. The issue with description-aware
methods is that the cluster labeling procedure dominates the clustering process
and the overall quality of the clusters is compromised.

The description-centric methods are specialized clustering methods that not
only focus on cluster labels but also try to provide quality clusters. Examples in
this category include LINGO [26], DisCover [18], CREDO [6], KeySRC [1] and
STHAC [34]. Our algorithm QSC also belongs to this category.

The user query was first used by QDC [9] to guide the clustering process.
Later EQDC [28] improved the QDC method to handle key phrases. However it
was based on ESTC and does not consider the query senses explicitly.

Apart from the above, word sense induction based methods such as Curva-
ture [12], SquaT++ [24, 11], B-MST [10], HyperLex [33], Chinese Whispers [2]
are related to this paper because they use query senses. They all identify multi-
ple senses of the query by applying graph based word co-occurrence techniques.
This paper identifies query senses from Wikipedia and is more similar to SRClus-
ter [22]. However both word sense induction based methods and SRCluster use
syntactic features of the document whereas in this paper we use both syntactic
and semantic features of the document to construct the similarity measure. The
comparison results of our algorithm with these algorithms are given in section
5.

3 Representation and Similarity Measure

This work uses query senses to generate initial clusters and then uses a new
document similarity measure to refine the initial clusters. The new document
similarity measure is based on a new document representation using both syn-
tactic and semantic features (topics). The following subsections introduce the
new document representation, the document similarity measure, the query sense
representation and the sense similarity measure. The algorithm is presented in
section 4.

3.1 Document Representation

The traditional bag-of-words model is widely used in document clustering to
represent documents in Vector Space. Terms are commonly weighted using the
tf-idf weighting scheme [31]. A document d in term-space is represented as

Tm(d) = {tfidf(t1, d), tfidf(t2, d), tfidf(t3, d), ..., tfidf(tn, d)} (1)

where n is the total number of terms and tfidf is the tf-idf function defined as

tfidf(t, d) = tf(t, d)× log
|D|
df(t)

(2)

where tf(t, d) is the frequency of term t in the document d, |D| is the total
number of documents and df(t) is the number of documents containing term t.

4 Abdul Wahid, Xiaoying Gao, and Peter Andreae

A criticism of this model is that it only uses a syntactic representation of the
document and ignores semantic representation of the document. One semantic
representation is based on topics representing the subjects or concepts that a
document is about. If we can identify all the topics of a documents, then we
can represent a document as a vector in topic space with weights for each topic
representing the importance of the topic to the document. We propose a new
document representation in which a document d containing topics τ1...τm in
topic-space is represented as

Tp(d) = {w(τ1, d), w(τ2, d), w(τ3, d), ..., w(τm, d)} (3)

where m is total number of topics and w(τ, d) is a weight of a topic τ , generated
using topic detector of Wikiminer Toolkit [23], in document d.

3.2 Document Similarity Measure

The most common and well known similarity measure for comparing documents
is cosine similarity function [27]. We define the combined cosine similarity that
includes semantic and syntactic features of document di and dj as

Sim(di, dj) = λCosine(Tp(di), Tp(dj)) + (1− λ)Cosine(Tm(di), Tm(dj)) (4)

where λ is a scaling variable and the value of λ is 0.1 based on the preliminary
experiments, Tp(d) is document vector in topic-space and Tm(d) is document
vector in term space.

3.3 Query Sense Representation

We represent a query using a set of senses S = {s1, s2, s3...sn} of the query
which is generated using Wikiminer [23] word disambiguation. These raw senses
are filtered and noise is removed by using tokenization, stemming and stop word
removal techniques. Tokens generated from these senses are mostly bi-grams such
as jaguar car, sepecat jaguar, fender jaguar, mac os. Other examples of senses
are panthera and south alabama jaguar football.

3.4 Sense Similarity Measure

We define the similarity score between a document di and a sense sj as a weighted
sum of six different criteria:

SimSense(di, sj) =
|sj |
|di|

6∑
k=1

wk · cmpk(di, sj) (5)

The six criteria for cmp are exact sequence matching, semantic matching, partial
matching in both term space and topic space of the document di for sense sj .
The exact sequence matching counts the number of occurrence of a sense sj in
document di. The semantic matching counts overlap of either exact or synonyms,
and partial matching counts overlap of individual words in sense sj and document
di.

Exploiting User Queries for Search Result Clustering 5

4 The Algorithm

We had developed a new algorithm called QSC that uses our new document
representation and similarity measures. It includes three main steps: the first
step is to group all the documents according to their similarity to the different
senses of the user query; the second step is to iteratively optimize clusters by
relocating documents from one cluster to another cluster based on the similarity
between documents and the clusters; the third step is to rank the documents
and clusters based on similarity with the user query.

4.1 Step 1: Initial Cluster Generation

The initial clusters are formed by calculating the similarity of each document
with each user query sense and assigning each document to each cluster associ-
ated with the maximally similar sense. Each cluster is labeled with its associated
sense. Documents that are not sufficiently similar to any sense are placed in a
cluster labeled general. The set of initial clusters C consists of all the clusters
that contains at least one document.

Algorithm 1 initClusters(query)

1: senses← GetSenses(query)
2: documents← GetDocuments(query)
3: C ← ϕ
4: for d ∈ documents do
5: s← ϕ
6: for cs ∈ senses do
7: s = find the maximum SimSense(d,cs)

8: end for
9: if s is Not Null then

10: Cs ← GetCluster(C, s)
11: if Cs is Null then
12: Cs ← new Cluster(s)
13: C ← C ∪ Cs

14: end if
15: end if
16: end for
17: return C

Algorithm 1 shows the pseudo code for generating the initial clusters. The
function initClusters takes an argument query that is given by user on runtime.
The function GetSenses provides all the senses of a query and the function
GetDocuments provides all preprocessed documents along with their topics.
The loop on Line 6 iterates over all senses and finds the maximum similar sense
for document d. The function GetCluster is used to update an existing cluster
that has cluster label s, or create a new cluster object Cs which is added to the
list of clusters C.

6 Abdul Wahid, Xiaoying Gao, and Peter Andreae

4.2 Step 2: Cluster Optimization

Initial clusters were based on the similarity between documents and the senses.
Base cluster labels can provide quality labeling of clusters. However the clusters,
especially the general cluster may contain a mixed group of documents that
might not be similar. We developed an iterative method to reassign some doc-
uments in order to improve cluster quality by increasing intra-cluster coherence
and inter-cluster distinctiveness.

Algorithm 2 optimizeClusters(C)

1: relocate← True
2: maxIter ← 200
3: while relocate is True ∧maxIter > 0 do
4: relocate← False
5: maxIter ← maxIter − 1
6: for cx ∈ C do
7: UpdateMean(cx)
8: end for
9: for cx ∈ C do

10: for dx s.t. dx ∈ set of documents of cx do
11: relocate← RelocateDocument(cx, dx, C)
12: end for
13: end for
14: end while
15: C ← FilterEmptyClusters(C)

The pseudo code for this optimization is given in Algorithm 2. The algorithm
repeatedly attempts to relocate documents to more appropriate clusters. The
algorithm terminates if it fails to make any change, or if it reaches the predefined
maximum number of iterations. The function UpdateMean updates the average
similarity scores of all clusters C by the using new similarity measure given in
Equation 4. The function RelocateDocument removes document dx from cluster
cx and adds it to another cluster cy ∈ C s.t. cy ̸= cx if the average similarity
of the document dx in cluster cx is lower then the mean of cy. The function
FilterEmptyClusters removes all clusters with no documents. One result of
this algorithm is that closely related clusters can be merged by relocating all
documents from one cluster to the other.

4.3 Step 3: Cluster Ranking

Users are interested in only those documents that are most closely related to
the query. Therefore the ranking of clusters and documents are computed with
respect to the query.

All the clusters were sorted, by calculating the relatedness score between the
user query and the cluster label, using the term similarity measureWikiSim [17].

Exploiting User Queries for Search Result Clustering 7

The WikiSim is Wikipedia based similarity measure that computes relatedness
between two terms. Documents in its own cluster were also sorted by calculating
the similarity of a document to its mean in its own cluster. The ranked result
list is then sent to user for browsing.

5 Results

The QSC was evaluated on two datasets, AMBIENT and MORESQUE.

– AMBIENT dataset consists of 44 ambiguous queries generated fromWikipedia
[7]. For each of the 44 queries there are 100 snippets that are congregated
from Yahoo. It also includes manually assigned class labels mapped to rele-
vant snippets.

– MORESQUE dataset consists of 114 ambiguous queries and is an extension
of AMBIENT dataset [24]. The AMBIENT dataset mainly has one word
queries but MORESQUE contains more than one word queries.

5.1 Comparison 1

This work was compared with two most popular algorithms STC [35] and Lingo
[26] and one recent algorithm SRCluster, [22] on a subset of AMBIENT dataset.
This subset consist of 9 queries chosen by SRCluster [22]. The comparison is
based on two evaluation criteria namely Entropy and Purity [39].These criteria
are widely used in evaluating cluster quality and the coherence of a cluster.
Entropy is defined as

Entropy =

k∑
i=1

nx

n
E(cx); E(cx) = − 1

log k

k∑
i=1

ni
x

nx
log

ni
x

nx
(6)

Where n is total number of documents and nx is total number of documents in
cluster cx. k represents number of classes in the dataset, ni

x is the number of
documents that belong to ith class. Purity is defined as

Purity =

k∑
x=1

nx

n
P (cx); P (cx) =

1

nx
max

i
(ni

x) (7)

Where x is a cluster number, k is total number of clusters, nx is total documents
in cluster cx, n is total number of documents in all clusters and i represents
class that documents belongs to. Table 1 list the 9 queries of AMBIENT dataset
chosen by the paper [22] on left column. The values of Entropy and Purity
for STC, LINGO and SRCluster were also taken from the paper of SRCluster
[22]. The values of QSC were computed on the same 9 queries to ensure fair
comparison. The cluster quality is determined on the basis of lower entropy and
higher purity of a given query. QSC outperformed other methods in almost all
queries except the query Zodiac. The query Zodiac has entropy 0 and purity 1
for both SRCluster and QSC which indicates that both methods are perfect for
this query.

8 Abdul Wahid, Xiaoying Gao, and Peter Andreae

Table 1: The Values of Entropy and Purity on a subset of AMBIENT Dataset

Entropy Purity

Query STC LINGO SRCluster QSC STC LINGO SRCluster QSC

Aida 0.210 0.449 0.103 0.018 0.030 0.780 0.655 0.878
Camel 0.142 0.650 0.032 0.019 0.040 0.550 0.919 0.928
Indigo 0.390 1.000 0.071 0.020 0.000 0.400 0.867 0.925
Jaguar 0.190 0.495 0.041 0.027 0.290 0.290 0.888 0.920
Excalibur 0.880 1.000 0.080 0.037 0.000 0.090 0.774 0.840
Minotaur 0.150 0.400 0.068 0.039 0.220 0.300 0.760 0.871
Urania 0.229 0.700 0.299 0.023 0.140 0.348 0.782 0.888
Zenith 0.245 1.000 0.047 0.017 0.000 0.500 0.871 0.958
Zodiac 0.520 1.000 0.000 0.000 0.000 0.389 1.000 1.000

5.2 Comparison 2

The results on the larger dataset, which consist of all queries of AMBIENT
and MORESQUE, based on purity and entropy were not given in [22]. However
we found another recent paper [11] that compared nine algorithms using F1-
measure on this large dataset. Therefore we compared our algorithm QSC with
these nine algorithms using F1-measure calculated by taking the harmonic mean
of precision and recall of the cluster [8]. The comparison was made between STC,
LINGO, KeySRC [1], Curvature [12], SquaT++ [24, 11], B-MST [10], HyperLex
[33], Chinese Whispers [2] and QSC. Figure 1 shows the percentage values of F1-

STC Lingo Curvature SquaT++v CW SquaT++e KeySRC B−MST HyperLex QSC
0

10

20

30

40

50

60

70

80

90

F
1−

m
ea

su
re

Fig. 1: Comparison of SRC methods

measure of 10 methods on combined dataset of AMBIENT and MORESQUE
taken from the paper [11] and the computed value of QSC. Clearly the QSC
performed significantly better than others and have the highest value 83.62 of
F1-measure. Other evaluation criteria Adjusted Rand Index(ARI) and Jaccard
Index(JI) are also used for comparing the clustering algorithms in paper [11].

Exploiting User Queries for Search Result Clustering 9

However we believe that they are not suitable for these two datasets. More
discussion is provided in the last part of section 5.4.

5.3 Comparison 3

The search results needs to be diverse and top ranked results should represent
different senses of the user query. In order to determine the diversification of
this work, the search results were evaluated based on S-recall@K (Subtopic
recall at rank K) and S-precision@r (Subtopic precision at recall) [37]
on combined dataset of AMBIENT and MORESQUE. The former evaluates the
performance of the system based on K top-ranked results for number of topics
of query q. S-precision@r measures the ratio of subtopics covered by minimum
set of results at given recall r.

3 4 5 6 7 8 9 10 15 20
35

40

45

50

55

60

65

70

75

k

S
−

re
ca

ll@
k

EP

KeySRC

QSC

Yahoo

Fig. 2: S-recall@k on all queries

50 55 60 65 70 75 80 85 90
10

15

20

25

30

35

40

45

50

55

r

S
−

pr
ec

is
io

n@
r

EP

KeySRC

QSC

Yahoo

Fig. 3: S-precision@r on all queries

These two measures are used to compare search engines (Yahoo! and Es-
sential Pages) that return ranked list of search results. The results returned by
QSC were compared by flattening the clusters. The result list was formed by
iterating through clusters and selecting top results. The clusters that only had
one document were appended at the end to avoid noise.

Figure 2 and Figure 3 shows the S-recall@k and S-precision@r respectively
for search results of Yahoo, Essential Pages(EP), KeySRC and QSC. The QSC
performs relatively better in terms of S-recall@k and significantly outperformed
others in terms of S-precision@r for the given values of k and r. This shows that
QSC produced more diverse results than currently available search engines.

5.4 Further Analysis

The detailed analysis consists of three sub sections: the first discusses the clus-
ter labels; the second discusses the processing time of the QSC, and the third
discusses the cluster numbers and some observations about final clusters.

10 Abdul Wahid, Xiaoying Gao, and Peter Andreae

Table 2: Cluster labels of STC, LINGO and QSC of the query Jaguar

STC LINGO QSC

Jaguar Car Auto Show Jaguar Car
S-Type, Used Jaguar Jaguar Parts Jaguar E-Type
XK, 2006 2007, Price-
Quotes and Reviews

Dealer Price Quotes and-
Reviews

Jaguar XK

Ford Motor Company-
Division

Ford Motor Company-
Division

Jaguar Cars
Jaguar Panthera Onca Jaguar Panthera Onca Panthera
Jaguar Animal

Website of Fender Musical-
Instrument

Fender Jaguar

Information Jaguar Video Mac OS X
New SEPECAT Jaguar

South Alabama Jaguar-
Football

Cluster Label Analysis: The goal of the QSC algorithm is to generate a useful
set of distinct clusters with informative labels.

Table 2 shows the cluster labels of the clusters generated for the query Jaguar
by STC, LINGO and QSC (the cluster labels are not in ranked order). The labels
for STC and LINGO were generated using the Carrot2 framework by adjusting
the parameter of maximum clusters number to 8. Table 2 shows that the cluster
labels generated by QSC provides more precise, intuitive and distinct labels than
the cluster labels from STC and LINGO.

Processing Time: The QSC was evaluated on standalone workstation using
Linux (64 bit) with Intel(R) Core(TM) i7-3770 CPU @ 3.40GHZ, 8GB RAM and
1TB HD. Figure 4 shows the processing time of all the queries in AMBIENT
Dataset. The average time required for processing the query is under 1.0 second
for both AMBIENT and MORESQUE datasets. Most of the queries were pro-
cessed under one second with few exceptional cases. The maximum processing
time was 6.3 seconds on a query jaguar because it had 54 senses to be processed.
This processing time was reduced to 1 second by eliminating overlapping senses
and processing only 10 distinct senses.

Strictly speaking, we cannot directly compare the processing time of other al-
gorithms due to different machines and platforms. However we would like to give
indications that word sense induction based algorithms (Curvature, Squat++,
B-MST, HyperLex and Chinese Whispers) need to construct the graph to iden-
tify the senses from the huge corpus, whereas QSC extract the senses from the
Wikipedia. Therefore the word sense induction based algorithms might require
more processing time than QSC. The processing time of clustering, without

Exploiting User Queries for Search Result Clustering 11

considering the time spent on graph construction, for all algorithms is under 1
second except for SquaT++ algorithm. The SquaT++v and SquaT++e spent
around 28 and 21 seconds respectively for clustering results as described in their
paper [11].

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

queries ids

se
co

nd
s

Fig. 4: Processing Time for All Queries

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum number of documents allowed in one cluster

S
co

re

Rand Index

Jaccad Index

Adjusted Rand Index

Fig. 5: RI, ARI and JI Analysis

Cluster Analysis: The average number of clusters for all queries in the AMBI-
ENT dataset was 7.84 i.e on average 7-8 clusters are formed for each query. The
average number of clusters for all queries in the AMBIENT and MORESQUE
datasets was 5.4. There were a few queries with a high number of clusters and the
maximum number of clusters was 18 for the query Monte Carlo. In contrast the
query Life on Mars just had 1 big cluster. The reason for having many clusters
was the large number of distinct query senses. The query Life on Mars had very
few senses and they were overlapping with each other, e.g. Life on Mars (TV
series), Life on Mars (U.S TV series), that causes single cluster for the query.

The QSC provided a more fine-grained clustering solution than the gold
standard (manually labeled search results). The gold standard for the query
jaguar had 7 clusters but QSC solution provided 9 clusters. The three clusters
jaguar car, jaguar e-type and jaguar xk in QSC were sub clusters of gold standard
jaguar car.

The QSC was not compared with other algorithms using index based evalu-
ation measures (ARI and JI) because these measures have many issues [30, 21].
One of the problems is that they do not handle fine-grained clustering solutions.
If a gold standard G has a cluster gi that contains 90 documents and clustering
C has clusters cj , cj+1 and cj+2 that contain all 90 documents then ARI and
JI will penalize the clustering solution heavily. However the fine-grain clustering
solution is consistent with the coarser solution and should not be penalized heav-
ily. In fact it may even be better solution because it provides the distinctiveness
that are not provided by the gold standard. ARI and JI do not measure this.

Figure 5 shows the phenomena of heavy penalty of ARI and JI as compared
to Rand Index (RI) [16] on sub clusters. This experiment was performed on the
AMBIENT and MORESQUE datasets by evaluating the perfect sub-clusters

12 Abdul Wahid, Xiaoying Gao, and Peter Andreae

that gradually increased the limit of the maximum number of documents allowed
in a cluster from 2 to 98. All the documents were perfectly assigned to the clusters
and the values of RI, ARI and JI were computed at each iteration. The lowest
value of RI, ARI and JI were 0.54, 0.05 and 0.04 respectively when the maximum
allowed number of documents in sub clusters were 2. Figure 5 shows ARI and
JI penalize small clusters and small sub-clusters heavily. The gold standard in
our dataset had very unbalanced number of clusters. A few clusters were very
small, and had 2 documents in a cluster and other were very large and had more
than 90 documents. It was observed that the comparison based on ARI and JI
is suitable only when the gold standard do not have sub clusters and all the
clusters have almost the same number of members.

6 Conclusion

This paper presents a new description-centric search result clustering algorithm
QSC that exploits query senses to generate meaningful cluster labels and use
syntactic and semantic features of documents to generate quality clusters.

This paper shows that QSC outperforms existing algorithms. QSC is com-
putationally inexpensive and provides better quality clusters with meaningful
labels as compared to other algorithms, hence it has the potential to be applied
to real time search result clustering applications.

The future direction for this work is to use Google WebIT and ukWac corpus
along with Wikipedia to enhance the quality of query senses. The similarity
measure and documentation representation are the key factors and a better
similarity measure could bring more improvement. The greedy search in step 2
of the QSC could be improved to avoid local optima, by using the query senses
in addition to document similarity. The currently used topic detection technique
is not as good as state-of-the-art topic detection techniques such as LDA [3];
using LDA to detect topics from search results by considering query senses may
further improve this work.

References

1. A. Bernardini, C. Carpineto, and M. D’Amico. Full-subtopic retrieval with
keyphrase-based search results clustering. In Web Intelligence and Intelligent
Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM International Joint Con-
ferences on, volume 1, pages 206–213. IET, 2009.

2. C. Biemann. Chinese whispers: an efficient graph clustering algorithm and its
application to natural language processing problems. In Proceedings of the First
Workshop on Graph Based Methods for Natural Language Processing, pages 73–80.
Association for Computational Linguistics, 2006.

3. D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 3:993–1022, 2003.

4. S. Branson and A. Greenberg. Clustering web search results using suffix tree
methods. Technical report, Stanford University, Tech. Rep. CS276A Final Project,
2002.

Exploiting User Queries for Search Result Clustering 13

5. C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A survey of web clustering
engines. ACM Computing Surveys (CSUR), 41(3):17, 2009.

6. C. Carpineto and G. Romano. Exploiting the potential of concept lattices for
information retrieval with credo. Journal of universal computer science, 10(8):985–
1013, 2004.

7. C. Carpineto and G. Romano. Ambient dataset, 2008.
8. D. Crabtree, X. Gao, and P. Andreae. Improving web clustering by cluster selec-

tion. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM Inter-
national Conference on, pages 172–178. IEEE, 2005.

9. D. Crabtree, X. Gao, and P. Andreae. Query directed clustering. Knowledge and
Information Systems, pages 1–37, 2012.

10. A. Di Marco and R. Navigli. Clustering web search results with maximum spanning
trees. In AI* IA 2011: Artificial Intelligence Around Man and Beyond, pages 201–
212. Springer, 2011.

11. A. Di Marco and R. Navigli. Clustering and diversifying web search results with
graph-based word sense induction. Computational Linguistics, (Just Accepted):1–
76, 2013.

12. B. Dorow, D. Widdows, K. Ling, J.-P. Eckmann, D. Sergi, and E. Moses. Using
curvature and markov clustering in graphs for lexical acquisition and word sense
discrimination. arXiv preprint cond-mat/0403693, 2004.

13. P. Ferragina and A. Gulli. A personalized search engine based on web-snippet hier-
archical clustering. In Special interest tracks and posters of the 14th international
conference on World Wide Web, pages 801–810. ACM, 2005.

14. F. Giannotti, M. Nanni, D. Pedreschi, and F. Samaritani. Webcat: Automatic
categorization of web search results. SEBD03, pages 507–518, 2003.

15. M. Hearst and J. Pedersen. Reexamining the cluster hypothesis: scatter/gather
on retrieval results. In Proceedings of the 19th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 76–84.
ACM, 1996.

16. L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–
218, 1985.

17. S. Jabeen, X. Gao, and P. Andreae. Harnessing wikipedia semantics for computing
contextual relatedness. In PRICAI 2012: Trends in Artificial Intelligence, pages
861–865. Springer, 2012.

18. K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A hierar-
chical monothetic document clustering algorithm for summarization and browsing
search results. In Proceedings of the 13th international conference on World Wide
Web, pages 658–665. ACM, 2004.

19. Y. S. Maarek, R. Fagin, I. Z. Ben-Shaul, and D. Pelleg. Ephemeral document
clustering for web applications. 2000.

20. I. Mas lowska. Phrase-based hierarchical clustering of web search results. In Ad-
vances in Information Retrieval, pages 555–562. Springer, 2003.

21. M. Meilă. Comparing clusteringsan information based distance. Journal of Multi-
variate Analysis, 98(5):873–895, 2007.

22. Y. Meiyappan, N. C. S. N. Iyengar, A. Kannan, Y. D. Suyoto, T. Suselo,
T. Prasetyaningrum, R. Tlili, Y. Slimani, S. Dufreche, M. Zappi, et al. Srclus-
ter: Web clustering engine based on wikipedia. International Journal of Advanced
Science and Technology, 39(1):1–18, 2012.

23. D. Milne and I. H. Witten. An open-source toolkit for mining wikipedia. Artificial
Intelligence, 2012.

14 Abdul Wahid, Xiaoying Gao, and Peter Andreae

24. R. Navigli and G. Crisafulli. Inducing word senses to improve web search result
clustering. In Proceedings of the 2010 conference on empirical methods in natural
language processing, pages 116–126. Association for Computational Linguistics,
2010.

25. C. L. Ngo and H. S. Nguyen. A tolerance rough set approach to clustering web
search results. In Knowledge Discovery in Databases: PKDD 2004, pages 515–517.
Springer, 2004.

26. S. Osiriski, J. Stefanowski, and D. Weiss. Lingo: Search results clustering algorithm
based on singular value decomposition. In Intelligent information processing and
web mining: proceedings of the International IIS: IIPWM04 Conference held in
Zakopane, Poland, page 359, 2004.

27. T. Pang-Ning, M. Steinbach, and V. Kumar. Introduction to data mining. WP
Co, 2006.

28. J. Park, X. Gao, and P. Andreae. Query directed web page clustering using suffix
tree and wikipedia links. In Advanced Data Mining and Applications, pages 91–99.
Springer, 2012.

29. P. Pirolli, P. Schank, M. Hearst, and C. Diehl. Scatter/gather browsing com-
municates the topic structure of a very large text collection. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 213–220.
ACM, 1996.

30. A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), volume 410, page 420, 2007.

31. G. Salton and M. J. McGill. Introduction to modern information retrieval. 1986.
32. B. Stein and S. M. Zu Eissen. Topic identification: Framework and application.

In Proc. International Conference on Knowledge Management, volume 400, pages
522–531, 2004.

33. J. Véronis. Hyperlex: lexical cartography for information retrieval. Computer
Speech & Language, 18(3):223–252, 2004.

34. P. Worawitphinyo, X. Gao, and S. Jabeen. Improving suffix tree clustering with
new ranking and similarity measures. Advanced Data Mining and Applications,
pages 55–68, 2011.

35. O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration. In
Proceedings of the 21st annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’98, pages 46–54, New York, NY,
USA, 1998. ACM.

36. O. Zamir, O. Etzioni, O. Madani, and R. Karp. Fast and intuitive clustering of
web documents. In Proceedings of the 3rd International Conference on Knowledge
Discovery and Data Mining, pages 287–290. MIT Press, 1997.

37. C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond independent relevance: methods
and evaluation metrics for subtopic retrieval. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and development in informaion
retrieval, pages 10–17. ACM, 2003.

38. X. Zhang, X. Hu, and X. Zhou. A comparative evaluation of different link types
on enhancing document clustering. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 555–562. ACM, 2008.

39. Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments
and analysis. Machine Learning, 2001.

